CHROM. 8209

Note

High-speed liquid chromatographic separation of some Strychnos alkaloids

ROBERT VERPOORTE and A. BAERHEIM SVENDSEN

Department of Pharmacognosy, University of Leyden, Gorlaeus Laboratories, Leyden (The Netherlands) (Received January 27th, 1975)

Bisset and his co-workers have studied the separation of some *Strychnos* alkaloids by means of thin-layer chromatography $(TLC)^1$ and gas-liquid chromatography $(GLC)^2$. Since we had obtained a fairly good separation of a series of alkaloids by high-performance liquid chromatography $(HPLC)^{3,4}$, we found it of interest to try this technique for the separation of a number of alkaloids related to strychnine.

EXPERIMENTAL

The analyses were carried out on a Packard Model 8200 liquid chromatograph equipped with a UV detector (the wavelength 254 nm was used) and a stainless-steel column (30 cm \times 2 mm I.D.) filled with Merckosorb Si 60 (5 μ m); the balanced-density slurry technique was used for filling the column. The column temperature was maintained at 20°. The solvents used (diethyl ether, methanol and diethylamine) were *pro analysi* grade (Baker). The analyses were carried out at a flow-rate of 2.00

TABLE I

RETENTION TIMES OF SOME STRYCHNOS ALKALOIDS Column conditions as specified in Experimental.

Alkaloid	<i>Retention time</i> (<i>min</i>) <i>in solvent</i> <i>system</i>	
	1	11
Icajine	4.2	2.6
Vomicine *	4.6	1.6
Pseudostrychnine	6.8	
Strychnine	7.2	12.4
4-Hydroxystrychnine	7.6	
a-Colubrine	8.8	14.3
Spermostrychnine	9.8	
β-Colubrine	10.3	10,2
Diaboline	16.0	10.9
Brucine	18.4	17.6
Serpentine	>20	
Alstonine	>20	

NOTES

Fig. 1. Chromatogram of some *Strychnos* alkaloids in solvent system I (see text). I = Icajine; V = vomicine; S = strychnine; P = pseudostrychnine; $\alpha = \alpha$ -colubrine; $\beta = \beta$ -colubrine; D = diaboline; B = brucine.

ml/min at a pressure of 205 kg/cm² for solvent system I (diethyl ether containing 1% of diethylamine) and at a flow-rate of 1.15 ml/min at 200 kg/cm² for solvent system II [diethyl ether-methanol (1:1)].

DISCUSSION

The separation of 12 Strychnos alkaloids related to strychnine by means of HPLC is shown in Table I and Fig. 1. When the results are compared with the separations obtained by Bisset and co-workers with TLC¹ and GLC², the following differences are observed: diaboline is retained more in HPLC than in TLC, perhaps because of the higher amount of diethylamine used in TLC; and α -colubrine and β -colubrine, which could not be separated completely with GLC or TLC, are well separated by HPLC. Although fairly good separation of α - and β -colubrines could also be obtained in a neutral solvent system (system II), tailing made this system less useful because of the acidic properties of the silica gel⁴.

REFERENCES

- 1 J. D. Phillipson and N. G. Bisset, J. Chromatogr., 48 (1970) 493.
- 2 N. G. Bisset and P. Fouché, J. Chromatogr., 37 (1968) 172.
- 3 R. Verpoorte and A. B. Svendsen, J. Chromatogr., 100 (1974) 227.
- 4 R. Verpoorte and A. B. Svendsen, J. Chromatogr., 100 (1974) 231.